34 research outputs found

    A Novel Docetaxel-Loaded Poly (ε-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    Get PDF
    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ε-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere®in the MCF-7 TAX30 cell culture, but the differences were not significant (p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere®(p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer

    Enhanced presentation of MHC class Ia, Ib and class II-restricted peptides encapsulated in biodegradable nanoparticles: a promising strategy for tumor immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many peptide-based cancer vaccines have been tested in clinical trials with a limited success, mostly due to difficulties associated with peptide stability and delivery, resulting in inefficient antigen presentation. Therefore, the development of suitable and efficient vaccine carrier systems remains a major challenge.</p> <p>Methods</p> <p>To address this issue, we have engineered polylactic-co-glycolic acid (PLGA) nanoparticles incorporating: (i) two MHC class I-restricted clinically-relevant peptides, (ii) a MHC class II-binding peptide, and (iii) a non-classical MHC class I-binding peptide. We formulated the nanoparticles utilizing a double emulsion-solvent evaporation technique and characterized their surface morphology, size, zeta potential and peptide content. We also loaded human and murine dendritic cells (DC) with the peptide-containing nanoparticles and determined their ability to present the encapsulated peptide antigens and to induce tumor-specific cytotoxic T lymphocytes (CTL) <it>in vitro</it>.</p> <p>Results</p> <p>We confirmed that the nanoparticles are not toxic to either mouse or human dendritic cells, and do not have any effect on the DC maturation. We also demonstrated a significantly enhanced presentation of the encapsulated peptides upon internalization of the nanoparticles by DC, and confirmed that the improved peptide presentation is actually associated with more efficient generation of peptide-specific CTL and T helper cell responses.</p> <p>Conclusion</p> <p>Encapsulating antigens in PLGA nanoparticles offers unique advantages such as higher efficiency of antigen loading, prolonged presentation of the antigens, prevention of peptide degradation, specific targeting of antigens to antigen presenting cells, improved shelf life of the antigens, and easy scale up for pharmaceutical production. Therefore, these findings are highly significant to the development of synthetic vaccines, and the induction of CTL for adoptive immunotherapy.</p

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery

    No full text
    In cancer imaging, nanoparticle biodistribution is typically visualised in living subjects using ‘bulk’ imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. As such the nanoparticle influx is observed only macroscopically and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation ie, leakage into tumour. Here we show that, in addition to conventional nanoparticle uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6C(hi) monocytes (almost 100% uptake in Ly-6C(hi) monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. Next, we demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (p<0.001, day 7 p.i.). The remarkable selectivity of this tumour targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration

    Manipulating human dendritic cell phenotype and function with targeted porous silicon nanoparticles

    No full text
    Dendritic cells (DC) are the most potent antigen-presenting cells and are fundamental for the establishment of transplant tolerance. The Dendritic Cell-Specific Intracellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN; CD209) receptor provides a target for dendritic cell therapy. Biodegradable and high-surface area porous silicon (pSi) nanoparticles displaying anti-DC-SIGN antibodies and loaded with the immunosuppressant rapamycin (Sirolimus) serve as a fit-for-purpose platform to target and modify DC. Here, we describe the fabrication of rapamycin-loaded DC-SIGN displaying pSi nanoparticles, the uptake efficiency into DC and the extent of nanoparticle-induced modulation of phenotype and function. DC-SIGN antibody displaying pSi nanoparticles favourably targeted and were phagocytosed by monocyte-derived and myeloid DC in whole human blood in a time- and dose-dependent manner. DC preconditioning with rapamycin-loaded nanoparticles, resulted in a maturation resistant phenotype and significantly suppressed allogeneic T-cell proliferation.Sebastian O. Stead, Steven J.P. McInnes, Svjetlana Kireta, Peter D. Rose, Shilpanjali Jesudason, Darling Rojas-Canales, David Warther, Frédérique Cunin, Jean-Olivier Durand, Christopher J. Drogemuller, Robert P. Carroll, P. Toby Coates, Nicolas H. Voelcke
    corecore